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SUMMARY 

Chromatographic dispersion, sometimes referred to as band broadening or zone 
spreading, reduces instrument resolution especially for long analysis times. Tung has 
described chromatographic dispersion as resulting from the convolution of a true 
chromatogram with a spreading function. This convolution produces an observed 
chromatogram which is broader than the true chromatogram. An algorithm which 
uses the generalized exponential function has been developed for solving Tung’s 
dispersion equation for the true (non-dispersed) chromatogram. Mathematical 
constraints and data analysis methods have been developed which enable the 
generation of realistic dispersion-corrected chromatograms. 

INTRODUCTION 

Separation of components in chromatography can occur because of retention 
differences produced by molecular adsorption, component size or charge character. 
Proper selection of packing materials and mobile phase can maximize separation. 
Dispersion, also referred to as zone spreading, produces signal band broadening. 

Several complex mass transfer or diffusional phenomena are responsible for 
dispersionl. These are related to packing material type, mesh size, column packing 
efficiency, mobile phase flow-rate and macromolecular size. Therefore, dispersion is 
unique to the chromatographic system. Dispersion corrections for one size-exclusion 
chromatography system cannot be applied to a different system or to different 
operating conditions within the same system. Dispersion is always present in 
chromatography and works to decrease separation capabilities. However dispersion 
corrections can be performed by applying mathematical techniques. 

An observed chromatogram, h, is the result of a convolution between a true 
chromatogram, f, and an instrument spreading function, g. 

h= f*g 

The integral form of this convolution is given by eqn. 2. 

(1) 
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m 

h(x) = 
s 

f(u) g(x - U) du 

--a) 

As shown by eqn. 2, the value of the observed chromatogram at each elution volume 
x or h(x) is obtained by an integration involving the true chromatogram and a shifted 
spreading function. 

Tung2 defined the spreading function g as a normal function of mean zero and 
standard deviation s. 

g(x - 24) = &exp[- (x.$)z] 
The standard deviation s, usually called the spreading factor, controls the 

amount of dispersion produced on each element, f(u) du, of the true chromatogram. 
The observed chromatogram at elution volume h(x) is the sum of the dispersion 
produced on each element of the true chromatogram evaluated at x. In exclusion 
chromatography, eqn. 2 is generally referred to as Tung’s dispersion equation. 

Observed chromatograms of standards having known or true distributions can 
be used to solve eqn. 2 for the unique single spreading factor associated with the 
instrument. By knowing the spreading factor, Tung’s equation can thereafter be 
inverted (solved) to obtain the dispersion-corrected or true chromatogram for other 
samples analyzed by the instrument. 

Solution of Tung’s dispersion equation for function f(u) is difficult and usually 
requires a computer program involving an algorithm which solves eqn. 1. Several 
algorithms have been previously developed 3P5. however, because of the ill-con- 
ditioned nature of eqn. 1, the true chromato&am solution produced is usually 
unsatisfactory, especially if the observed chromatographic data contain random signal 
noise6. 

In this work we will estimate a solution to eqn. 1 by making the assumption that 
the true chromatogram f(u) can be described by a modified generalized exponential 
(GEX) function’. In the past, we have used this function extensively to fit noisy 
chromatographic datas. We have shown that the GEX function is very general in 
nature and can fit negatively or positively skewed data with low or high kurtosis 
(flatness). The overall generality of the GEX makes the fixed chromatographic shape 
assumption less limiting. We will use constrained non-linear regression analysis to 
solve for the GEX function parameters which best fit Tung’s dispersion equation. The 
best fit GEX parameters will then define an estimate of the true chromatogram. 

THE GENERALIZED EXPONENTIAL FUNCTION* 

The modified GEX function which will be used to define the true or dispersion 
corrected chromatogram is given by eqn. 4. 

* For symbols, see the list at the end of the paper 
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withA > OandB > 1. 

f(u) = 0 (4) 

The GEX has five parameters: uO, u,, uh, A and B. The values of u,, u, and h, can be 
easily obtained from the chromatogram (see Fig. 1). The A and B parameters are 
related to the shape of the GEX function and define the inflection points (ul, uIh; uz, 
u&. It can be shown that: 

u1 = u, + (u, - u,)t + (5) 

u2 = u, + (u, - u,)tC (6) 

3 - A - 2B & JA” - 
with t’ = 

6A + 4AB + 1 : 

2 - 28 

Ulh = f(d 

U2h = f(u2) 

(7) 

(8) 
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Fig. I. Typical GEX function starting at q, having a maximum at (u,. u,,) and inflection points at (ul, qh) 

and (uz, ~4. 
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Also it has been shown that the nth moment of a GEX function about an axis 
parallel to the ordinate at an elution volume equal to z is given by9: 

(9) 

where 0, = z “C, p*+’ IY”-’ exp [(B - 1)/A] 

p = 24, - 24, 

“C, = 
n! 

r! (n - r)! 

a=u,-z 

Eqn. 9 can be used to determine the area within the GEX function (area = $), the 
mean of the function (mean = $/area), variance of the function (variance = 
yF”/area), and skewness of the function (skewness = yy/[area (variance)3/2]}, and 
kurtosis of the function (kurtosis = yy/[area (variance)*]}. 

REGRESSION ANALYSIS 

In regression analysis an objective function which has a set of adjustable 
parameters is optimized. Optimization involves maximizing or minimizing an 
objective function. In non-linear regression, optimization will usually converge 
provided that the initial start values of the parameters (first-guess values) are not too 
distant from the best fit parameter values. A successful regression is crucially 
dependent upon having an objective function that has a minimum number of 
parameters and also upon having “good” first guess parameter values. 

To solve Tung’s equation a least squares objective function of the form 

~Mxd- 1 f(u) g(xi - u) du12 (10) 

i=l -3c 

was minimized by using a Levenberg-Marquardt regression algorithml’. The 
objective function is the sum of N terms each of which is the square of the difference 
between the observed chromatogram and the convolution integral both evaluated at 
elution volume xi. x1 and xN are the first and last elution volumes respectively which 
span the total elution volume over which the observed chromatogram signal is 
detected. 

Unfortunately there exists a large number of significantly different parameter 
sets each of which adequately minimize the objective function. Thus the regression is 
ill-conditioned and the parameter solution set found may not be realistic. To 
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compensate for the ill-conditioned nature of the regression, constraints must be used to 
limit the number of possible parameter solution sets. If the constraints are not 
adequate, the regression will probably find a solution which is distant from the correct 
solution, Therefore it is critical that regression constraints be found that are both 
realistic and as confining as possible. 

REGRESSION CONSTRAINTS 

Inherent in the GEX function are three intrinsic constraints which realistically 
confine the regression solution space. These are (1) continuity of signal; (2) 
non-negativity of signal; and (3) signal appearance over a finite range. 

Most single-component chromatographic signals are continuous and smooth. 
The GEX function satisfies this requirement. We do not normally expect to see both 
negative and positive appearance of a single component at a detector. Thus the 
chromatographic signal should always be positive and the GEX function answers this 
requirement. A chromatographic signal should only deviate from non-zero vlues 
during the time interval over which material is eluting through a detector. The GEX 
function meets this condition because it is zero for elution volume values less than u. 
and also because it approaches zero as the elution volume becomes large. 

Unfortunately, the above inherent constraints are usually not sufficient to 
restrict the regression solution space. Additional constraints are necessary to insure 
reasonable regression convergence to an acceptable solution. 

Additional constraints can be imposed by noting that in the convolution h of two 
functions, g and f that’ 1 (1) the area of the convolution is the product of the areas of the 
functions g and f; (2) the mean of the convolution is the sum of the means of functions 
g and f; and (3) the variance of the convolution is the sum of the variances of functions 
g and f. 

The spreading function g has unit area, zero mean, and variance s’. Thus the true 
chromatogram or function f has an area and mean equal to the area and mean of the 
observed chromatogram or the convolution h. Also, the variance of the function fis the 
variance of the convolution h less the variance of the spreading function g. 

We can easily calculate the area S, mean _%?, and variance 0’ of he observed 
chromatogram. By using eqn. 9, the area, mean and variance of the GEX function 
representing the true chromatogram can be expressed in terms of the GEX parameters. 
We can use this knowledge to eliminate three of the five GEX parameters. The most 
convenient parameters to eliminate are u,, u, and uh_ 

Uo=X-J_ (11) 

with C = T[B/A] r [(B + 2)/A]/{r[(B + 1)/A])’ 

U, = 24, + (X - u,)D (12) 

with D = [(B - 1)/A]“* r(s/A)/r[(s + 1)/A] 

u,, = SE/&, - U,) 

with E = A exp [(l - @/A] [(B - l)/A]B’A/r(s/A) 

(13) 
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The true chromatogram function then becomes a GEX function having only two shape 
parameters. The regression algorithm must find the two shape parameters (A,@ which 
best minimize the much simplified and more constraining objective function. 

Our past experience in fitting chromatograms has shown that the GEX shape 
parameters, A and B almost always have values that are less than ten. Also the GEX 
function only exists in real space when A and B have values that are greater than zero 
and one, respectively. Acceptable first guess values for the shape parameters are the 
shape parameters found by fitting a GEX function to the observed chromatogram. 
Table I summarizes the information needed to set up parameter first guess values and 
their constraints when regression is used to find an estimate of the true chromatogram. 

It should be emphasized that the regression solution constraints that have been 
developed apply only to a Gaussian spreading function in which the spreading factor, 
s, is constant. If the spreading function was made to vary with the elution volume then 
some of the constraints would not necessarily apply. 

EXPERIMENTAL 

A non-linear regression routine was developed which contains the objective 
function (eqn. 10) and incorporates the parameter constraints previously discussed. 
A computer program of this regression, named “CDC” for chromatogram dispersion 
correction, was generated using a Pascal compiler (Turbo Pascal 3.0, Borland 
International) operating with a 2148 personal computer (Zenith Data Systems) having 
a 8087 math coprocessor. The math coprocessor enable calculations to be perform- 
ed on real data with 16 digits accuracy within a range of 4.19 * 10b307 to 
1.67 * 10+308. 

Two dispersed chromatograms were produced using the convolution operator, 
eqn. 2. GEX functions were used to represent the true (non-dispersed) chromatograms 
and the normal spreading functions were defined by assigning specific spreading 
factors. Both dispersed chromatograms, made by the convolutions which represent the 
observed chromatograms, were each fitted to a GEX function so that first guess values 
for the shape parameters could be made for the the program CDC. The computer 
program CDC was then used to reverse the convolution or invert eqn. 2. Thus CDC 
deconvolutes the obeserved (dispersed) chromatograms and thereby should return the 
original GEX functions representing the true chromatograms. Using the above 
technique it was possible to gauge the ability of the program CDC to deconvolute 
typical chromatogram data. 

TABLE I 

TRUE CHROMATOGRAM REGRESSION SOLUTION SPACE 

A = Small positive amount, i.e., 0.01. 

Parameter Maximum Minimum First guess value 

A 10 A -4 
B 10 l+A B, 
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TABLE II 

CASE 1 CHROMATOGRAMS 

Information Symbol True 
chromatogram 

Observed or dispersed 
chromatogram, 
s = 2.5 

CDC estimate of the 
true chromatogram 

Shape parameter A 3.14 2.99 3.03 
Shape parameter B 3.45 5.62 4.73 

Signal start point u, 36.0 30.0 34.3 

Maximum of signal u, 45.0 45.0 45.0 
Maximum height Uh 2.06 1.61 2.07 

1st Inflection point u, 41.6 40.9 41.7 

2nd Inflection point u2 48.3 49.1 48.2 

Area S 0.161 0.161 0.161 
Mean x 45.1 45.05 45.05 

Variance u2 9.00 15.4 9.15 

Skewness 0.105 0.068 0.079 
Kurtosis 2.74 2.85 2.82 

_ 

RESULTS AND DISCUSSION 

Tables II and III give information on the two cases tested. Case 1 was intended to 
test CDC performance when a true chromatogram is nearly Gaussian or normal in 
shape and is only slightly dispersed (S = 2.5). Case 2 was designed to evaluate CDC 
when a true chromatogram is skewed right and has been severely dispersed (s = 10.0). 
The three chromatogram plots associated with each test case are shown in Figs. 2 and 
3. 

Case 1 is a less demanding test of CDC capability than Case 2. The data in Table 
II and Fig. 2 show that CDC deconvoluted the dispersed chromatogram with a great 

40 45 5c 

elution volume 
Fig. 2. Test Case 1 Chromatograms. Circles and triangles are data points for dispersed and true 
chromatograms, respectively. Solid line is the CDC estimate of the true chromatogrdm. 
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TABLE III 

CASE 2 CHROMATOGRAMS 

Information Sjmbol True Observed or dispersed CDC estimate qf the 
chromatogram chromatogram true chromatogram 

s = 10.0 

Shape parameter 
Shape parameter 

Signal start point 
Maximum of signal 
Maximum height 
1st Inflection point 
2nd Inflection point 
Area 

Mean 
Variance 
Skewness 
Kurtosis 

0.50 2.74 0.663 
8.50 4.30 9.11 

36.0 12.0 34.4 
45.0 47.5 45.4 

1 .oo 0.430 0.932 
40.5 35.3 40.3 
49.6 59.4 50.5 
12.5 12.5 12.5 
48.2 48.0 48.0 
36.2 135.7 35.7 

1.26 0.162 0.962 
5.70 2.83 4.52 

deal of accuracy. The true chromatogram and the CDC-estimated chromatogram 
made from inverting the dispersed chromatogram are almost identical. 

Although Case 2 is a harsh and rigorous test of CDC, the computer algorithm 
performed much better than expected. The data in Table III and the chromatogram 
plots in Fig. 3 show that the estimate of the true chromatogram made by CDC is very 
close to the true chromatogram. 

The time required for CDC to converge to a deconvoiution solution was 630 and 
760 s for Cases 1 and 2, respectively. Thus computer time requirements are reasonable 
even for a microcomputer. Computation time would have been much less (probably 
two orders of magnitude less) on a mainframe computer and/or if a more efficient 
regression algorithm was used. 

1 

elution volume 

Fig. 3. Test Case 2 Chromatograms. Circles and triangles are data points for dispersed and true 
chromatograms respectively. Solid line is the CDC estimate of the true chromatogram. 
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CONCLUSIONS 

The use of a GEX function and constrained non-linear regression has been 
shown to be a very effective in correcting the dispersion produced in chromatography. 
This is possible because realistic regression solution constraints have been developed 
which minimize the computational time required to reach a solution and simul- 
taneously reduce the possibility of converging to a false solution. Because of the above 
features, the regression can be performed on a personal computer. 

SYMBOLS 

first shape parameter of the GEX function 
second shape parameter of the GEX function 
factor in eqn. 11 
combination of 12 taken r at a time, see eqn. 9 
factor in eqn. 12 
factor in eqn. 13 
true chromatogram 
spreading function 
observed chromatogram 
order of a moment 
total number of data points 
index variable 
area 
spreading factor, see eqn. 2 
true chromatogram elution volume 
GEX starting point 
abscissa value of the first GEX inflection point 
abscissa value of the second GEX inflection point 
GEX function maximum signal value 
abscissa point of GEX maximum signal 
signal value of the first GEX inflection point 
signal value of the second GEX inflection point 
factor used in eqn. 6 
observed chromatogram elution volume 
mean elution volume value 
axis for a moment (axis = 24 = z) 
factor used in eqn. 9 
factor used in eqn. 9 
gamma function 
tith moment about axis z 
factor used in eqn. 9 
variance 
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